1、尽管有这些限制,现代集合论的诸种公理,仍然足够灵活,结合形式逻辑的规则,它们基本上为整个现代数学提供了坚实的基础。
2、明白了这些,我们就可以讨论罗素悖论的数学表达了。罗素说:设集合S是所有不属于自身的集合构成的集合,即S={x|x∉S}。那么,S是否属于自身呢?
3、一个疯子把五个无辜的人绑在电车轨道上。一辆失控的电车朝他们驶来,并且片刻后就要碾压到他们。幸运的是,你可以拉一个拉杆,让电车开到另一条轨道上。然而问题在于,那个疯子在另一个电车轨道上也绑了一个人。考虑以上状况,你是否应拉拉杆?这即是“电车难题”,是伦理学领域最为知名的思想实验之最早由哲学家菲利帕·福特提出。在伦理哲学中,电车难题是批判功利主义的主要理论,而功利主义的观点是,大部分道德决策都是根据“为最多人提供最大的利益”的原则做出的。从一个功利主义者的观点来看,明显的选择应该是拉拉杆,拯救五个人只杀死一个人。但是功利主义的批判者认为,一旦拉了拉杆,你就成为一个不道德行为的同谋——你要为另一条轨道上单独的一个人的死负部分责任。然而,其他人认为,你身处这种状况下就要求你要有所作为,你的不作为将会是同等的不道德。总之,不存在完全的道德行为,这就是重点所在。
4、当然,这只是罗素悖论的通俗说法。罗素悖论是关于数学中集合论的一个矛盾而提出的。
5、元素与集合的关系有“属于∈”和“不属于∉”两种,比如“1”这个元素,它是集合A的元素,但是不是集合B的元素,写作1∈A,1∉B
6、但对这个看似合理的问题的回答却会陷入两难境地。如果s属于S,根据S的定义,s就不属于S;反之,如果s不属于S,同样根据定义,s就属于S。无论如何都是矛盾的。人们希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。这些原则必须足够狭窄,以保证排除一切矛盾;另一方面又必须充分广阔,使康托尔集合论中一切有价值的内容得以保存下来。
7、如果集合A不是自己的元素,那么集合A就满足“不包括自己的集合”的定义,应该是此集合的元素之矛盾。(罗素悖论)。
8、现代集合论的诸种公理,非常具体地规定了如何建立“其他集合的集合”(setsofothersets)。
9、芝诺问他的学生:“一支射出的箭是动的还是不动的?”
10、书目悖论:一个图书馆编纂了一本书名词典,它列出这个图书馆里所有不列出自己书名的书,那么它列不列出自己的书名?
11、从罗素时代至今,很多学者会认为数学家的工作是在发现真理。但在维氏看来,数学家的工作更多的是在发明。
12、基于这两种不同的数学哲学基础,面对悖论问题时,可以得出很不相同的分析方式和解决方式。一百年前出现罗素悖论的时候,数学家们普通接受“发现”的数学哲学观点,当数学出现悖论的时候,就觉得天塌下来了:我的上帝,是不是客观真理出问题了,或者上帝旨意出问题了?如果是以维氏“发明”的数学哲学观点,就觉得没有什么大不了的,根本不是客观真理出问题了,而是数学家主观观念出问题了。数学家构造的规则矛盾了,在矛盾的地方再构造一个新规则就是了。
13、一艘可以在海上航行几百年的船,归功于不间断的维修和替换部件。只要一块木板腐烂了,它就会被替换掉,以此类推,直到所有的功能部件都不是最开始的那些了。问题是,最终产生的这艘船是否还是原来的那艘特修斯之船,还是一艘完全不同的船?如果不是原来的船,那么在什么时候它不再是原来的船了?
14、“确实是这样,在每个人的眼里它都是动的。可是,这支箭在每一个瞬间里都有它的位置吗?”
15、理发师悖论可以表达成集合论的形式,就是罗素悖论。R={x|x不属于x},然后现在问R是否属于R。如果R不属于R,那么根据定义,R属于R;如果R属于R,那么根据定义,R不属于R。
16、张三喝了杯有毒的咖啡,并随着时间的推移,咖啡中的毒起了作用;张三向过去的自己发了条消息告诉过去的自己不要喝那杯咖啡;结果就是过去的张三没喝那杯咖啡。
17、这使得朴素集合论自相矛盾(inconsistent):我们有一个陈述,它必须同时既是真的,又是假的。
18、策梅洛(Zermelo)和弗兰克尔(Fraenkel)提出的ZFC公理系统的分类公理宣称:
19、在某个城市中有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”
20、“说谎者悖论”的内容是:如果某人说自己正在说谎,那么Ta说的话是真还是假?
21、这样一来,这个集合就得到了自相矛盾的结果,与理发师悖论如出一辙。
22、(简言之,如果B自含,则B将不属于B,则B将不自含,矛盾;如果B不自含,则B将属于B,则B将自含,矛盾。)
23、集合论为数学奠定了坚实的基础,许多概念不清的问题利用集合论得到了完美的解释。数学家希尔伯特度赞誉康托尔的集合论是“数学天才最优秀的作品”,是“人类纯粹智力活动的最高成就之一”。
24、这就引出一个问题: 他该不该给自己理发? 或者问: 他的头发应由谁理? 要是他给自己理发, 那么他就违反了自己的规定; 因为按规定, 他不应该为自己理发。
25、2)否认恶的存在,即认为恶并没有实体性的存在,只是善的缺乏;
26、在19世纪末至20世纪初,逻辑和数学的基础受到许多困难(所谓的悖论)的发现的影响,特别是经典集合论中被发现有自相矛盾的现象,尤其是罗素悖论 ,以极为简明的形式震撼了数学的基础,这就是“第三次数学危机”。
27、然而好景不长,20世纪初,罗素悖论等一系列集合论悖论的发现,引起了人们对集合论,甚至是数学基础的讨论。正当数学家们不但接受了集合论而且还有大部分经典分析的时候,这些矛盾动摇了它们,使得数学家们对数学的整个基本结构的有效性产生了怀疑。
28、如果集合A是自己的一个元素,那么集合A就不满足“不包括自己的集合”的定义,不应该出现在此集合中,矛盾;
29、飞矢不动悖论是古希腊数学家芝诺(Zeno of Elea)提出的一系列关于运动的不可分性的哲学悖论中的一个。人们通常把这些悖论称为“芝诺悖论”。
30、1)恶是上帝计划中的一部分,是其实现善的手段;
31、既然避免了在未来发生不幸,那么张三怎么会在穿越后得知自己将发生不幸?
32、由于这几个悖论迟迟得不到解决,康托尔承受着巨大的精神压力,最终精神失常,死在了哈勒大学精神病院里。时至今日,第三次数学危机依然没有完美解决。数学家们只是通过人为添加一些限制条件以回避悖论的出现。
33、(1)如果A包括其自身,那么很好!A会满足“成为A的一个成员”的条件——包括其自身/自含。
34、在《数学原理》中,罗素阐释了一个集合论悖论,由于它只涉及集合论中最基础的东西,易于理解,因而在数学界广泛传播。
35、那么,如何解决罗素悖论呢?很简单,对于“R是否属于R”此无定义处进行重新定义,属于不属于都可以,或者说此处没有意义也可以,看哪种定义比较适用。数学家构造的理论出现矛盾了,就像人们讲话出现了矛盾了一样,解决的方法很简单:“对不起,我没有注意到这里有矛盾,我重新说明一下,此处应该是如此如此……”
36、理科少年周彦:围棋4段、会写代码,却说自己像榴莲?老凡尔赛了!
37、所以“所有集合的集合”不是以自己为元素的集合。罗素悖论产生的依据可以不存在,罗素悖论可以不存在,“所有集合的集合”可以存在,不用回避“所有集合的集合”。不把后面时间存在的“所有集合的集合”当作前面时间存在的“所有集合”中的集合就不会出现“自指”。
38、许多卓越的数学家深为这新的理论所起的作用而感动,希尔伯特(Hilbert)称“没有人能把我们从康托尔为我们创造的乐园中开除出去”。
39、来源:华夏基石e洞察(ID:chnstonewx)
40、什么是集合呢?所谓集合,是由某些确定的元素构成的整体。例如:
41、正当数学家们觉得没有人比他们更懂集合的时候,英国哲学家柏兰德·罗素提了个问题:有没有不是集合的整体?也就是说,宇宙万物中,有没有不可能被放在一起考虑的一类东西?
42、几个世纪前,罗马教廷出了一本书,书中用当时最流行的数学推论导出“上帝是万能的”。一位智者针锋相对地问:“上帝能创造出一块他搬不动的石头吗?”
43、3)恶都是相对的恶,对于神而言,恶是不存在的。
44、既然这个集合本身,很显然也不是一个自然数,因为它是一个“不是自然数的‘所有东西’的巨大聚集”,那么,它必然也是它自己这个集合的成员之一(即,它是一个自含集合)。
45、(1)“不是自然数的所有东西的集合”(注:这个巨大的集合包括“披萨”、“加利福尼亚州”,同时,也包括其自身,因为此集合当然也不是自然数);
46、也就是说,村子里的人分为两类,第一类人会给自己刮胡子,第二类人从不给自己刮胡子。而这名理发师不给第一类人刮胡子,只给第二类人刮胡子。
47、那么,具体到罗素悖论,如何分析和解决呢?很简单,R是数学家发明构造的,数学家给出的规则对于“R是否属于R”给出了一个矛盾式的规则,相当于没有定义。没有定义起码有三种可能性:缺少定义,重言定义,矛盾定义。
48、“那么,在这一瞬间里,这支箭是动的,还是不动的?”
49、几个世纪前,罗马教廷出了一本书,书中用当时最流行的数学推论导出“上帝是万能的”。一位智者针锋相对地问:“上帝能创造出一块他搬不动的石头吗?”
50、忒修斯悖论最早出自普鲁塔克的记载。它是这样描述的:
51、如果一个理发师只给不给自己理发的人理发,他该不该给他自己理发?
52、因为你年轻的祖父母被你杀死了,所以就不会有你的父亲;没有了你的父亲,你就不会出生;你没出生,就没有人会把你的祖父母杀死;若是没有人把你的祖父母杀死,那么,你就会存在;既然你存在,那么就有了最开始的假设,即回到过去,在父亲出生之前杀死祖父母。
53、如果这句话是真的,那就不符合“我说的这句话是假的”,则这句话就是假的;
54、所以,如果B包括其自身,那么它就与我们用来定义B的条件矛盾了,所以B不包括其自身。
55、这可能比较难懂,但是一旦搞明白了逻辑,悖论就跃然纸上了。?∈?是否成立?如果?∈?,那么就说明?必然遵守x∉x,因此就得出?∉?。因此用逻辑表达式,罗素悖论就是:
56、张三穿越到未来,得知自己将发生不幸;为了避免不幸的发生,张三回到现实做出了避免导致不幸发生的行为;结果就是张三在未来没有发生不幸。
57、(2)如果B不包括其自身,它将满足条件,成为它自己的成员之一;所以,B将必须包括其自身!
58、以下为我的科普书《十分钟智商运动》中相关内容的文章。
59、可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?
60、那么问题来了:你如何担保你自己不是在这种困境之中?
61、对于所谓的“集合”(set)是什么,我们感到有些模糊。
62、在假设推理这几个悖论题时,把后面时间发生的事件(误)当作前面时间发生的事件,是这四个逻辑题成为悖论的原因。
63、如果是上帝既想阻止又能阻止“恶”,那为什么我们的世界充满了“恶”呢?
64、再比如定义f(x)=1ifx>0;f(x)=-1ifx那个这个函数在x=0处是没有定义的。再展开一下。比如定义f(x)=1ifx>0;f(x)=f(x)ifx=0;f(x)=-1ifx同样,这个函数在x=0处是没有定义的。再展开一下。比如定义f(x)=1ifx>0;f(x)=f(x)+1ifx=0;f(x)=-1ifx同样,这个函数在x=0处是没有定义的。如果有人定义了这样一个函数,那么怎么办呢?因此要取消所有的f(x)的意义吗?不用啊,只需要在没有定义(缺少定义,重言定义,矛盾定义)的地方追加定义即可。这就是维氏的解决方案。
65、集合中可以包含另外的集合,如A={1,3,5,8},B={8,5},那么B⊂A(B是A的子集(subset))。
66、缸中之脑假想:一个人被邪恶科学家施行了手术(这个人可能就是你),他的脑被从身体上切了下来,放进一个盛有维持脑存活营养液的缸中。脑的神经末梢连接在计算机上,这台计算机按照程序向脑传送信息,以使他保持一切完全正常的幻觉。
67、如果你认为数学家是在发现客观真理,那么你就不会接受维氏的分析和解决。如果你认为数学家是在发明主观理论,那么维氏的分析和解决再清楚再简单再合理不过了。
68、举个例子,就像一开始根据乘法来定义除法a/b=ciffa=b*c,就会得出0/0=2=3这样的矛盾。怎么解决这里的矛盾呢?难道要取消所有的除法?当然不是了,只需要在矛盾的地方重新定义一下:0不能作除数。瞧,问题就解决了。
69、数学家GeorgCantor和其他早期集合论者,在如今被我们称为“朴素集合论”(naivesettheory)的框架内工作。
70、维特根斯坦反复强调:“数学家不是发现者,而是发明者。”,又说“数学家一直在发明新的描述形式。有的人受实际需要的刺激,另一些人出自审美需要,还有些人以其他种种方式。”
71、如果是上帝既想阻止又能阻止“恶”,那为什么我们的世界充满了“恶”呢?
72、二十世纪初,数学界笼罩在一片喜悦祥和的气氛之中。法国大数学家彭加莱在1900年的国际数学家大会上公开宣称:数学的严格性,现在看来可以说是实现了。他说这句话是有依据的,那就是德国数学家康托尔所创立的集合论。
73、“披萨”这个词也不是自然数,所以它是集合成员。
74、很自然,本身作为一个集合,“所有集合的集合”必须包括其自身,作为一个元素。
75、现实不是科幻小说,科学发展中出现的任何理论危机都意味着我们认识的不足,也激励着一代又一代的科学家们去探索、发现。因此,我们不必追求完美的理论,相反,真理的丧失、权威的崩塌才是学科发展前所未有的良机。
76、2000多年以来,人类一直没有弄清楚无穷的概念。比如全体正整数4…和全体正偶数8…,都是无穷多个,那么它们谁更多呢?
77、既然避免了在未来发生不幸,那么张三怎么会在穿越后得知自己将发生不幸?
78、这个论证过程是错误的,因为矛盾并不是来源于理发师存在这个前提。其实,理发师给出的规则对于“理发师要不要给自己理发”没有定义,只是给出了一个矛盾式。如果认为存在定义,就会产生矛盾。这才是矛盾的根源。所以,矛盾说明的是理发师并没有为“是否给自己理发”给出规则。如何解决呢?很简单,关于“理发师是否给自己理发”,理发师可以再制定一个新规则。
版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。
本文地址:/juzi/9107.html